Deep Learning for NAS

Real-time Hazard Precursor Identification

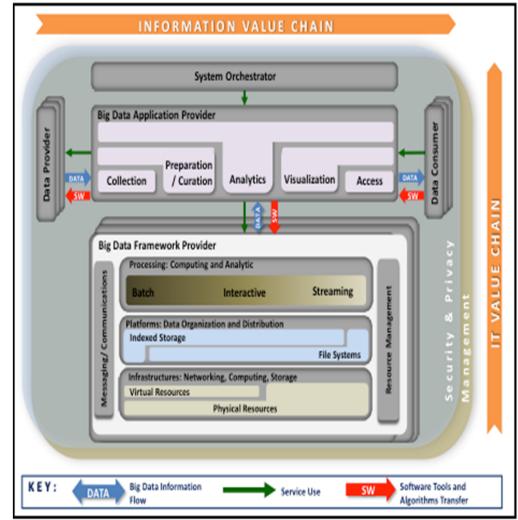
Presented to: ATIEC 2016 By: Dr. Nancy Grady & Dr. Philip Reiner, SAIC Date: September 21, 2016

Aviation Information World - Forecasting the Future

Deep Learning for NAS

- Big Data
- Data Science
- Big Data Analytics Trends
- Deep Learning Technique
- NAS Application

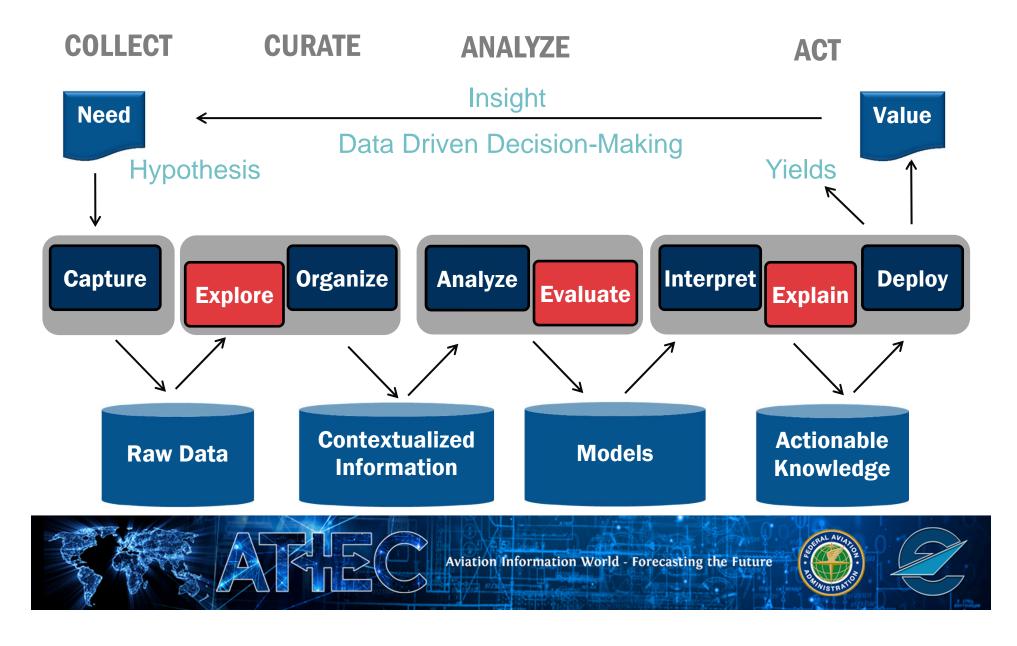
NIST Big Data Reference Architecture

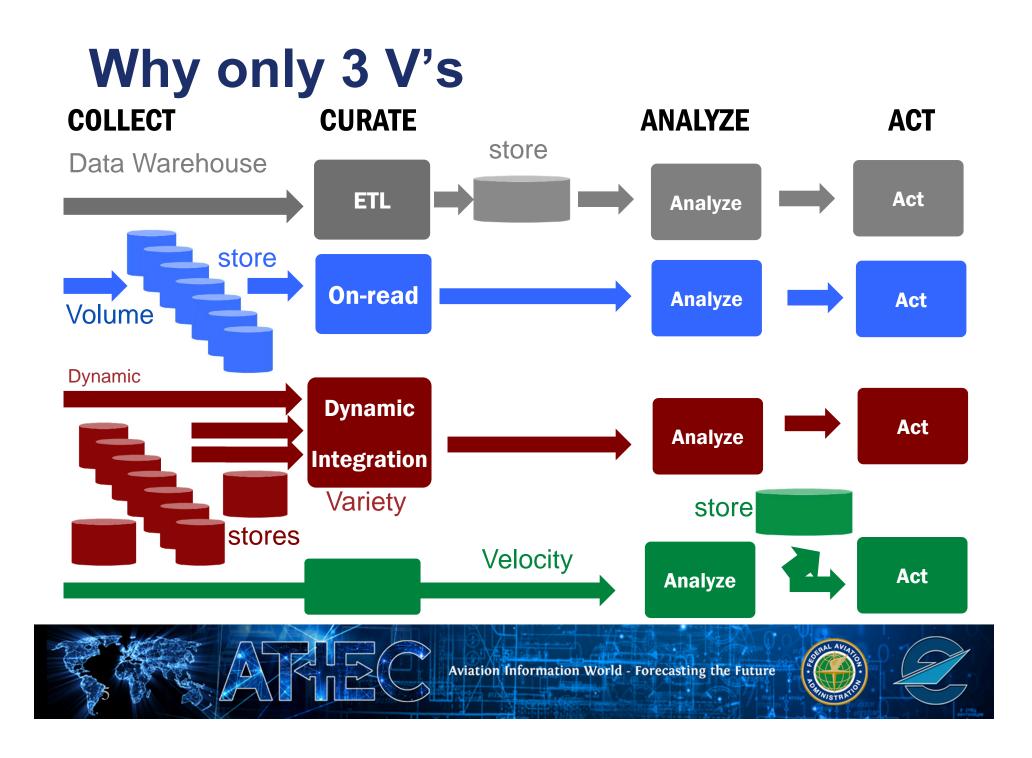


Big Data consists of extensive datasets that require a scalable architecture for efficient storage, manipulation, and analysis

https://www.nist.gov/el/cyberphysical-systems/big-data-pwg

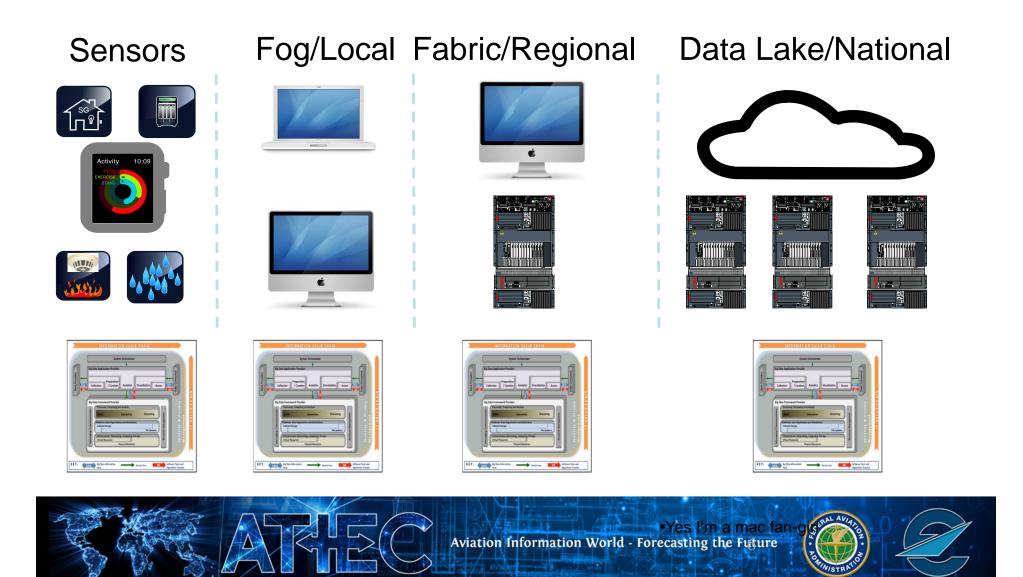
Application Layer–Data Science



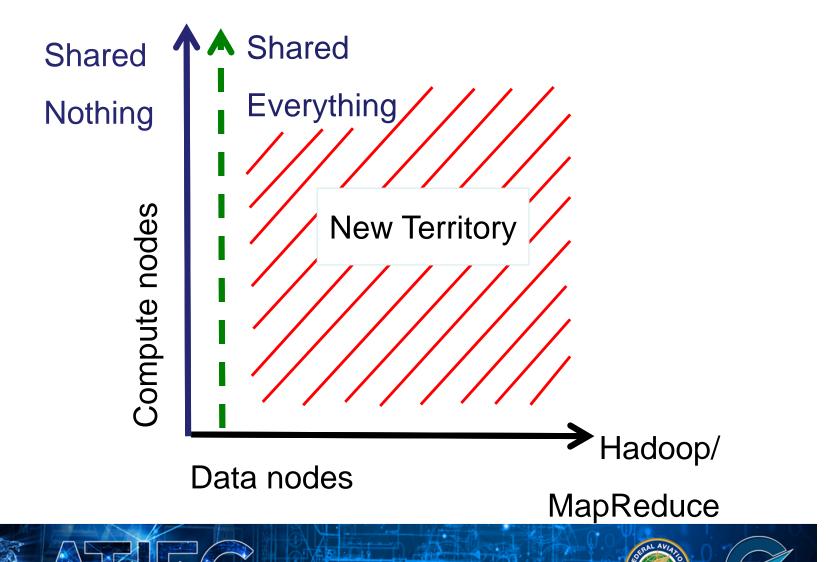


Now: Internet of Things

Multi-tiered Architecture



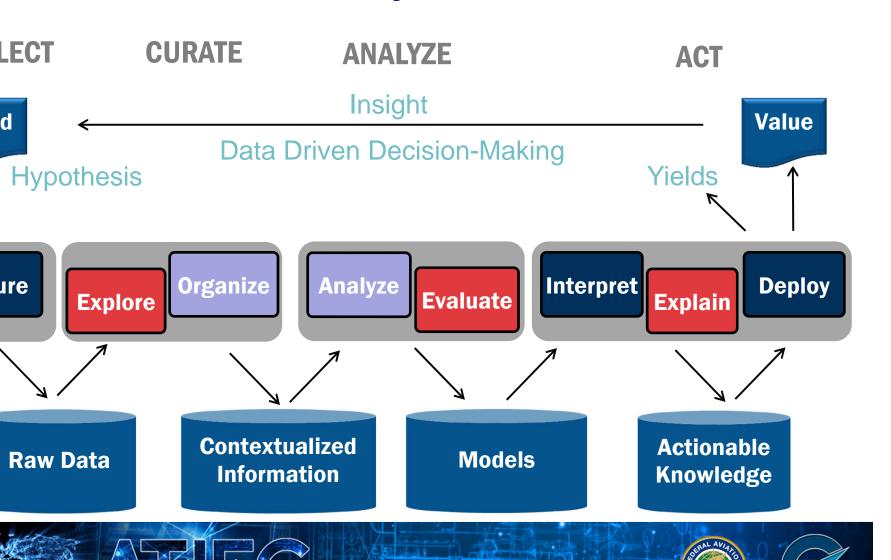
ew: Compute vs. Data Intensive



ew Computing Trends

- Compute-intensive parallel computing
- Data-intensive parallel computing
- **Data Centers and Data Lakes**
- CPU and GPU
- Data Mining and Data Science
- Network for sharing vs. distributed computing
- **Distributed Analytics**
- **Cloud and Micro-services**
- **Network Effect**

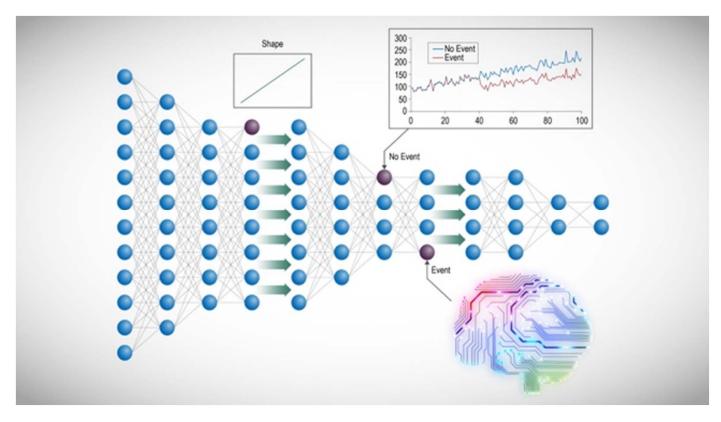
Iodeling Implication ature Extraction and Analysis



o-Feature-Extraction Analysis

- Involves direct learning from data
- Unsupervised for automated feature extraction
- Combines supervised and unsupervised

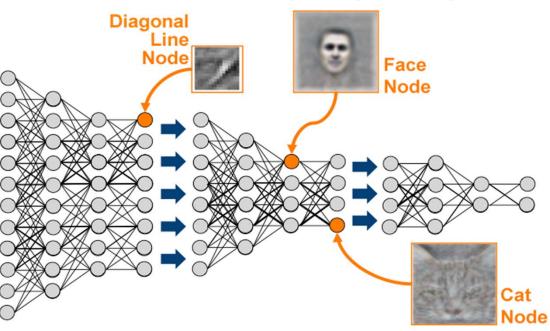
ake a Cue From Neurobiology



Mimic the Brain

eep Learning rm gained popularity in 2007

nch of machine learning based on a set of algorithms that attempt to model n-level abstractions in data by using a deep graph with multiple processing layers



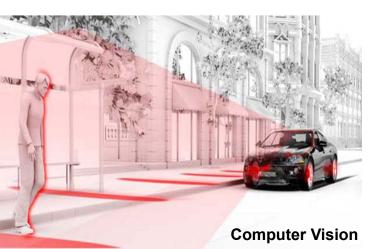
- Since 1980
- GPU computing
- Distributed computing
- Distributed memory
- Large-scale storage

•Google's deep network that automatically created image filters for recognizing faces and cats.

's Not Your Father's Neural Network

ject Recognition

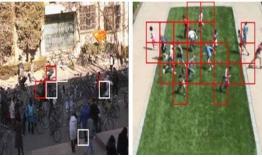
Object Classification



Language Translation

Anomaly

Detection



eep Learning for NAS

Sensor Analytics

- Failure prediction

Trajectory Analysis

Identification of hazard features

omponent Failure Prediction

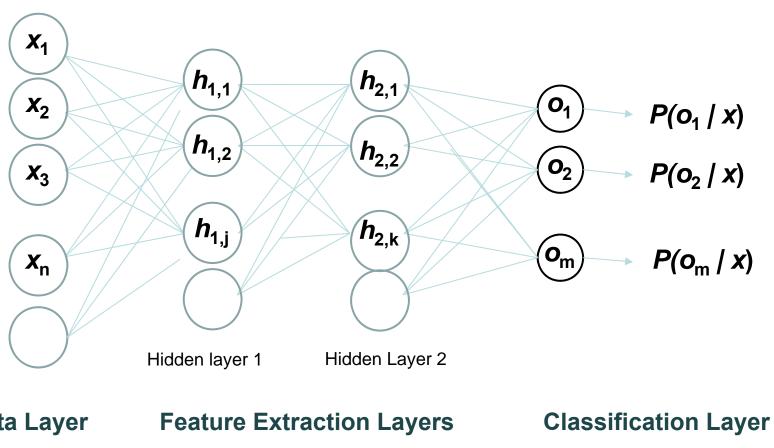
Sensor data from component

- Past data where failures have occurred
- Currently running data

Model learns from past data

- Features
- Relationships between features and fault classification

Component Failure Prediction Sep Learning Use Case



omponent Failure Prediction



RAL AVIAL

ypes of Deep Learning

From Neural Network Origins

- Torch, Theano, Caffe
- Supervised and/or unsupervised

From Neurological Origins

- Numenta Hierarchical Temporal Memory
- Continual Learning

uPIC Approach

umenta Platform for Intelligent Computing

- **Continuous online learning**
- **Temporal and spatial patterns**
- **Real-time streaming data**
- **Prediction and modeling**
- **Anomaly detection**
- **Hierarchical temporal memory**

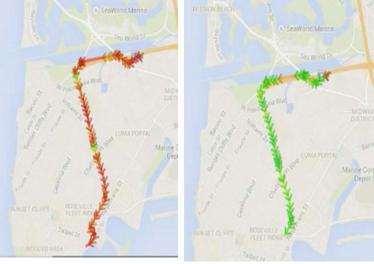
http://numenta.com/biological-and-machine-intelligence/

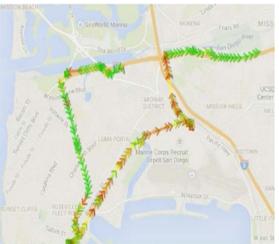
Se Case: Trajectory Anomalies

- Learning directly from observations
- Neuroscience-based pattern recognition
- Learning, as the brain learns
- Good for pattern recognition
- **Continuous learning**
 - Not constrained to train-test-live
 - Accommodates drift

Anomaly detection

- In space and time





ummary

- Separation of model-building and modelscoring
- Competition between data sharing and sharing analytics results
- Alternate method for learning from data
 - Without feature extraction
- Competition between physics-based models and unsupervised learning

uestions/Comments?

nancy.w.grady@saic.com philip.d.reiner@saic.com

